Copies of the inside front and back covers of the Griffiths text are provided on the last page.

1. The analogue of integration by parts for the divergence is:

$$\int_{\mathcal{V}} f\left(\mathbf{\nabla} \cdot \mathbf{A}\right) \mathrm{d}\tau = \oint_{\mathcal{S}} f\mathbf{A} \cdot \mathrm{d}\mathbf{a} - \int_{\mathcal{V}} \mathbf{A} \cdot (\mathbf{\nabla}f) \,\mathrm{d}\tau.$$

This has the usual integration by parts format in which the derivative is transferred from the \mathbf{A} to f and the product $f\mathbf{A}$ has to be evaluated at the boundaries of the region of integration. In this case, the original integral is over a volume \mathcal{V} and the boundary is the surrounding surface \mathcal{S} . Compare to:

$$\int_{a}^{b} f\left(\frac{\mathrm{d}g}{\mathrm{d}x}\right) \mathrm{d}x = \left. uv \right|_{a}^{b} - \int_{a}^{b} g\left(\frac{\mathrm{d}f}{\mathrm{d}x}\right) \mathrm{d}x.$$

(a) Use integration by parts to evaluate:

$$I = \int_{\mathcal{V}} \left(r^4 - 1 \right) \boldsymbol{\nabla} \cdot \left(\frac{\hat{r}}{r^2} \right) \mathrm{d}\tau.$$

For the integration volume, use a sphere of radius R centred at the origin.

(b) Derive the following integration by parts rule for the curl:

$$\int_{\mathcal{S}} f\left(\mathbf{\nabla} \times \mathbf{A}\right) \cdot \mathrm{d}\mathbf{a} = \oint_{\mathcal{P}} f\mathbf{A} \cdot \mathrm{d}\boldsymbol{\ell} + \int_{\mathcal{S}} \left(\mathbf{A} \times \mathbf{\nabla} f\right) \cdot \mathrm{d}\mathbf{a}.$$

For this derivation, start by using the appropriate product rule for the ∇ operator and then apply Stoke's theorem.

2(a) Starting from:

$$\int_{-a}^{b} f(x) x \frac{\mathrm{d}\delta(x)}{\mathrm{d}x} \,\mathrm{d}x,$$

use integration by parts of show that:

$$x\frac{\mathrm{d}\delta(x)}{\mathrm{d}x} = -\delta(x),$$

where $\delta(x)$ is the one-dimensional Dirac Delta function. Assume that a and b are positive constants such that the point x = 0 lies between the integration limits.

(b) Let $\theta(x)$ be the Heaviside step function defined by:

$$\theta(x) = \begin{cases} 1 & \text{if } x > 0, \\ 0 & \text{if } x <= 0 \end{cases}$$

Starting with:

$$J = \int_{-\infty}^{\infty} f(x) \frac{\mathrm{d}\theta(x)}{\mathrm{d}x} \,\mathrm{d}x,$$

show that $\delta(x) = \frac{d\theta}{dx}$ which is one way to define the one-dimensional Dirac Delta function. You'll have to integrate by parts and then use the fundamental theorem of calculus.

3. Find the electric field a distance z above the centre of a square loop of side length a. Assume that the loop of wire has a uniform linear charge density λ . You may use the fact that the electric field a distance z above the midpoint of a uniformly charge wire of length a is given by:

$$\mathbf{E} = \frac{1}{4\pi\varepsilon_0} \frac{\lambda a}{z\sqrt{z^2 + \left(\frac{a}{2}\right)^2}} \,\hat{z},$$

(see Griffiths Example 2.2). Does your result make sense in the limit $z \to \infty$?

4(a) Find the electric field a distance z above the centre of a uniformly-charged circular loop. The loop has radius r and linear charge density λ . Does your result make sense in the limit $z \to \infty$?

(b) Starting from the result of (a), find the electric field a distance z above the centre of a flat, uniformly-charged circular disk of radius R. The charge per unit area of the disk is σ . Does your result make sense in the limit $z \to \infty$?

5. A charge q sits at the back corner of a cube, as shown in the figure. What is the electric flux $\Phi_{\rm E}$ through the shaded side?

6. Use Gauss's law to find the electric field inside and outside a thin spherical shell of radius R that carries a uniform charge per unit area σ .

7. A thick spherical shell carries a charge density:

$$\rho(r) = \frac{k}{r^2},$$

for a < r < b, where a is the inner radius of the shell and b is its outer radius.

(a) Find the electric field in the following regions of space:

- (i) r < a(ii) a < r < b(iii) r > b.
- (b) Plot the magnitude of **E** as a function of r for the case of b = 2a.

Ĵ

$$\begin{aligned} \mathbf{Cartesian.} \quad d\mathbf{l} &= dx \, \hat{\mathbf{x}} + dy \, \hat{\mathbf{y}} + dz \, \hat{\mathbf{z}}; \quad d\tau &= dx \, dy \, dz \\ \\ Gradient: \quad \nabla t &= \frac{\partial t}{\partial x} \, \hat{\mathbf{x}} + \frac{\partial t}{\partial y} \, \hat{\mathbf{y}} + \frac{\partial t}{\partial z} \, \hat{\mathbf{z}} \\ \\ Divergence: \nabla \cdot \mathbf{v} &= \frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y} + \frac{\partial v_z}{\partial z} \\ \\ Curl: \quad \nabla \times \mathbf{v} &= \left(\frac{\partial v_z}{\partial y} - \frac{\partial v_y}{\partial z}\right) \, \hat{\mathbf{x}} + \left(\frac{\partial v_x}{\partial z} - \frac{\partial v_z}{\partial x}\right) \, \hat{\mathbf{y}} + \left(\frac{\partial v_y}{\partial x} - \frac{\partial v_x}{\partial y}\right) \, \hat{\mathbf{z}} \\ \\ Laplacian: \quad \nabla^2 t &= \frac{\partial^2 t}{\partial x^2} + \frac{\partial^2 t}{\partial y^2} + \frac{\partial^2 t}{\partial z^2} \\ \\ \mathbf{Spherical.} \quad d\mathbf{l} &= dr \, \hat{\mathbf{r}} + r \, d\theta \, \hat{\theta} + r \sin \theta \, d\phi \, \hat{\phi}; \quad d\tau = r^2 \sin \theta \, dr \, d\theta \, d\phi \\ \\ Gradient: \quad \nabla t &= \frac{\partial t}{\partial r} \, \hat{\mathbf{r}} + \frac{1}{r} \frac{\partial t}{\partial \theta} \, \hat{\theta} + \frac{1}{r \sin \theta} \, \frac{\partial t}{\partial \phi} \, \hat{\phi} \\ \\ Divergence: \nabla \cdot \mathbf{v} &= \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 v_r) + \frac{1}{r \sin \theta} \, \frac{\partial}{\partial \theta} (\sin \theta \, v_{\theta}) + \frac{1}{r \sin \theta} \, \frac{\partial v_{\phi}}{\partial \phi} \\ \\ Curl: \quad \nabla \times \mathbf{v} &= \frac{1}{r \sin \theta} \left[\frac{\partial}{\partial \theta} (\sin \theta \, v_{\phi}) - \frac{\partial v_{\theta}}{\partial \phi} \right] \, \hat{\mathbf{r}} \\ &\quad + \frac{1}{r} \left[\frac{1}{\sin \theta} \frac{\partial v_r}{\partial \phi} - \frac{\partial}{\partial r} (r v_{\phi}) \right] \, \hat{\theta} + \frac{1}{r} \left[\frac{\partial}{\partial r} (r v_{\theta}) - \frac{\partial v_r}{\partial \theta} \right] \, \hat{\phi} \\ \\ Laplacian: \quad \nabla^2 t &= \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial t}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \, \frac{\partial t}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 t}{\partial \phi^2} \\ \\ \\ \mathbf{Cylindrical.} \quad d\mathbf{l} &= ds \, \hat{\mathbf{s}} + s \, d\phi \, \hat{\phi} + dz \, \hat{\mathbf{z}}; \quad d\tau = s \, ds \, d\phi \, dz \\ \\ \\ Gradient: \quad \nabla t &= \frac{\partial}{\sigma s} \frac{\partial}{(sv_s)} + \frac{1}{s} \frac{\partial v_{\phi}}{\partial \phi} + \frac{\partial v_z}{\partial z} \\ \\ Curl: \quad \nabla \times \mathbf{v} &= \left[\frac{1}{s} \frac{\partial v_s}{\partial \phi} - \frac{\partial v_{\phi}}{\partial z} \right] \, \hat{\mathbf{s}} + \left[\frac{\partial v_s}{\partial z} - \frac{\partial v_z}{\partial s} \right] \, \hat{\phi} + \frac{1}{s} \left[\frac{\partial}{\partial s} (sv_{\phi}) - \frac{\partial v_s}{\partial \phi} \right] \, \hat{z} \\ \\ Laplacian: \quad \nabla^2 t &= \frac{1}{s} \frac{\partial}{\partial s} \left(s \frac{\partial t}{\partial s} \right) + \frac{1}{s^2} \frac{\partial^2 t}{\partial \phi^2} + \frac{\partial^2 t}{\partial z^2} \\ \\ \\ Laplacian: \quad \nabla^2 t &= \frac{1}{s} \frac{\partial}{\partial s} \left(s \frac{\partial t}{\partial s} \right) + \frac{1}{s^2} \frac{\partial^2 t}{\partial \phi^2} + \frac{\partial^2 t}{\partial z^2} \\ \end{array}$$

Triple Products

(1) $\mathbf{A} \cdot (\mathbf{B} \times \mathbf{C}) = \mathbf{B} \cdot (\mathbf{C} \times \mathbf{A}) = \mathbf{C} \cdot (\mathbf{A} \times \mathbf{B})$

(2)
$$\mathbf{A} \times (\mathbf{B} \times \mathbf{C}) = \mathbf{B}(\mathbf{A} \cdot \mathbf{C}) - \mathbf{C}(\mathbf{A} \cdot \mathbf{B})$$

Product Rules

(3)
$$\nabla(fg) = f(\nabla g) + g(\nabla f)$$

- (4) $\nabla (\mathbf{A} \cdot \mathbf{B}) = \mathbf{A} \times (\nabla \times \mathbf{B}) + \mathbf{B} \times (\nabla \times \mathbf{A}) + (\mathbf{A} \cdot \nabla)\mathbf{B} + (\mathbf{B} \cdot \nabla)\mathbf{A}$
- (5) $\nabla \cdot (f\mathbf{A}) = f(\nabla \cdot \mathbf{A}) + \mathbf{A} \cdot (\nabla f)$
- (6) $\nabla \cdot (\mathbf{A} \times \mathbf{B}) = \mathbf{B} \cdot (\nabla \times \mathbf{A}) \mathbf{A} \cdot (\nabla \times \mathbf{B})$
- (7) $\nabla \times (f\mathbf{A}) = f(\nabla \times \mathbf{A}) \mathbf{A} \times (\nabla f)$
- (8) $\nabla \times (\mathbf{A} \times \mathbf{B}) = (\mathbf{B} \cdot \nabla)\mathbf{A} (\mathbf{A} \cdot \nabla)\mathbf{B} + \mathbf{A}(\nabla \cdot \mathbf{B}) \mathbf{B}(\nabla \cdot \mathbf{A})$

Second Derivatives

- (9) $\nabla \cdot (\nabla \times \mathbf{A}) = 0$
- (10) $\nabla \times (\nabla f) = 0$
- (11) $\nabla \times (\nabla \times \mathbf{A}) = \nabla (\nabla \cdot \mathbf{A}) \nabla^2 \mathbf{A}$

FUNDAMENTAL THEOREMS

Gradient Theorem : $\int_{\mathbf{a}}^{\mathbf{b}} (\nabla f) \cdot d\mathbf{l} = f(\mathbf{b}) - f(\mathbf{a})$ **Divergence Theorem**: $\int (\nabla \cdot \mathbf{A}) d\tau = \oint \mathbf{A} \cdot d\mathbf{a}$ $\int (\mathbf{\nabla} \times \mathbf{A}) \cdot d\mathbf{a} = \oint \mathbf{A} \cdot d\mathbf{l}$ **Curl Theorem**:

BASIC EQUATIONS OF ELECTRODYNAMICS

Linear media:

Maxwell's Equations

In general: In general: $\begin{cases}
\nabla \cdot \mathbf{E} = \frac{1}{\epsilon_0} \rho \\
\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t} \\
\nabla \cdot \mathbf{B} = 0 \\
\nabla \times \mathbf{B} = \mu_0 \mathbf{J} + \mu_0 \epsilon_0 \frac{\partial \mathbf{E}}{\partial t}
\end{cases}$ In matter: $\begin{cases}
\nabla \cdot \mathbf{D} = \rho_f \\
\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t} \\
\nabla \cdot \mathbf{B} = 0 \\
\nabla \times \mathbf{H} = \mathbf{J}_f + \frac{\partial \mathbf{D}}{\partial t}
\end{cases}$

Auxiliary Fields

Definitions:

$$\begin{cases} \mathbf{D} = \epsilon_0 \mathbf{E} + \mathbf{P} \\ \mathbf{H} = \frac{1}{\mu_0} \mathbf{B} - \mathbf{M} \end{cases} \begin{cases} \mathbf{P} = \epsilon_0 \chi_e \mathbf{E}, \quad \mathbf{D} = \epsilon \mathbf{E} \\ \mathbf{M} = \chi_m \mathbf{H}, \quad \mathbf{H} = \frac{1}{\mu} \mathbf{B} \end{cases}$$

Potentials

$$\mathbf{E} = -\nabla V - \frac{\partial \mathbf{A}}{\partial t}, \qquad \mathbf{B} = \nabla \times \mathbf{A}$$

Lorentz force law

$$\mathbf{F} = q(\mathbf{E} + \mathbf{v} \times \mathbf{B})$$

Energy, Momentum, and Power

Energy: $U = \frac{1}{2} \int \left(\epsilon_0 E^2 + \frac{1}{\mu_0} B^2 \right) d\tau$ Momentum: $\mathbf{P} = \epsilon_0 \int (\mathbf{E} \times \mathbf{B}) d\tau$ Poynting vector: $\mathbf{S} = \frac{1}{\mu_0} (\mathbf{E} \times \mathbf{B})$ Larmor formula: $P = \frac{\mu_0}{6\pi c} q^2 a^2$

(permittivity of free space)
(permeability of free space)
(speed of light)
(charge of the electron)
(mass of the electron)

SPHERICAL AND CYLINDRICAL COORDINATES

Spherical $\begin{cases} x = r \sin \theta \cos \phi \\ y = r \sin \theta \sin \phi \\ z = r \cos \theta \end{cases} \begin{cases} \hat{\mathbf{x}} = \sin \theta \cos \phi \, \hat{\mathbf{r}} + \cos \theta \cos \phi \, \hat{\theta} - \sin \phi \, \hat{\phi} \\ \hat{\mathbf{y}} = \sin \theta \sin \phi \, \hat{\mathbf{r}} + \cos \theta \sin \phi \, \hat{\theta} + \cos \phi \, \hat{\phi} \\ \hat{\mathbf{z}} = \cos \theta \, \hat{\mathbf{r}} - \sin \theta \, \hat{\theta} \end{cases} \begin{cases} \hat{\mathbf{r}} = \sqrt{x^2 + y^2 + z^2} \\ \theta = \tan^{-1} \left(\sqrt{x^2 + y^2}/z\right) \\ \phi = \tan^{-1}(y/x) \end{cases} \begin{cases} \hat{\mathbf{r}} = \sin \theta \cos \phi \, \hat{\mathbf{x}} + \sin \theta \sin \phi \, \hat{\mathbf{y}} + \cos \theta \, \hat{\mathbf{z}} \\ \hat{\theta} = \cos \theta \cos \phi \, \hat{\mathbf{x}} + \cos \theta \sin \phi \, \hat{\mathbf{y}} - \sin \theta \, \hat{\mathbf{z}} \\ \hat{\phi} = -\sin \phi \, \hat{\mathbf{x}} + \cos \phi \, \hat{\mathbf{y}} \end{cases}$

Cylindrical

$$\begin{cases} x = s \cos \phi \\ y = s \sin \phi \\ z = z \end{cases} \qquad \begin{cases} \hat{\mathbf{x}} = \cos \phi \, \hat{\mathbf{s}} - \sin \phi \, \hat{\phi} \\ \hat{\mathbf{y}} = \sin \phi \, \hat{\mathbf{s}} + \cos \phi \, \hat{\phi} \\ \hat{\mathbf{z}} = \hat{\mathbf{z}} \end{cases}$$

$$s = \sqrt{x^2 + y^2}$$

$$\phi = \tan^{-1}(y/x)$$

$$z = z$$

$$\begin{cases}
\hat{\mathbf{s}} = \cos\phi \,\hat{\mathbf{x}} + \sin\phi \,\hat{\mathbf{y}} \\
\hat{\phi} = -\sin\phi \,\hat{\mathbf{x}} + \cos\phi \,\hat{\mathbf{y}} \\
\hat{\mathbf{z}} = \hat{\mathbf{z}}
\end{cases}$$

FUNDAMENTAL CONSTANTS