PHYS 301 Tutorial #3 — group problem solving

Copies of the inside front and back covers of the Griffiths text are provided on the last
page.

1. The analogue of integration by parts for the divergence is:

/Vf(V'A)dTZjifA-da—/vA-(Vf)dT.

This has the usual integration by parts format in which the derivative is transferred from the A
to f and the product fA has to be evaluated at the boundaries of the region of integration. In

this case, the original integral is over a volume V and the boundary is the surrounding surface S.

/;f(%)dx:uvm—/abg(%)dx.

(a) Use integration by parts to evaluate:

I:/v(r‘l—l)V-(r%)dr.

For the integration volume, use a sphere of radius R centred at the origin.

Compare to:

(b) Derive the following integration by parts rule for the curl:

/Sf(VxA)da:jifAdﬁJr/S(AxVf)~da.

For this derivation, start by using the appropriate product rule for the V operator and then apply

Stoke’s theorem.
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2(a) Starting from:

use integration by parts of show that:

where §(x) is the one-dimensional Dirac Delta function. Assume that a and b are positive constants

such that the point x = 0 lies between the integration limits.
(b) Let 6(x) be the Heaviside step function defined by:

1 ifx>0,
0 ifzx<=0.

0(z) =

Starting with:

)
J—/_Oof(x) s,

de
show that d(x) = T which is one way to define the one-dimensional Dirac Delta function. You'll
x

have to integrate by parts and then use the fundamental theorem of calculus.

3. Find the electric field a distance z above the centre of a square loop of side length a. Assume
that the loop of wire has a uniform linear charge density A. You may use the fact that the electric

field a distance z above the midpoint of a uniformly charge wire of length a is given by:

1 A
E ¢ 2

:47r50 a2
A2+ ()

(see Griffiths Example 2.2). Does your result make sense in the limit z — 0o?
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4(a) Find the electric field a distance z above the centre of a uniformly-charged circular loop. The

loop has radius r and linear charge density A. Does your result make sense in the limit z — 00?
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(b) Starting from the result of (a), find the electric field a distance z above the centre of a flat,
uniformly-charged circular disk of radius R. The charge per unit area of the disk is . Does your

result make sense in the limit 2z — oco?
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5. A charge ¢ sits at the back corner of a cube, as shown in the figure. What is the electric flux ®g
through the shaded side?
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6. Use Gauss’s law to find the electric field inside and outside a thin spherical shell of radius R that

carries a uniform charge per unit area o.

7. A thick spherical shell carries a charge density:

for a < r < b, where a is the inner radius of the shell and b is its outer radius.

(a) Find the electric field in the following regions of space:

(i) r<a
(i) a<r<b
(iii) r > b.

B

(b) Plot the magnitude of E as a function of r for the case of b = 2a.
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VECTOR DERIVATIVES VECTOR IDENTITIES
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BASIC EQUATIONS OF ELECTRODYNAMICS
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FUNDAMENTAL CONSTANTS

Maxwell’s Equations

In general:
1
V-E=—p
€0
V xE = —g
ot
V-B=0
JE
V x B = wol + noeo—
ot
Auxiliary Fields
Definitions :
D= EQE +P
1
H=—B-M
Mo
Potentials
E=-VV — %,
ot

Lorentz force law

F=¢gE+vxB)

Energy, Momentum, and Power

In matter:

f

V'D:,Of

VxE:—g
dt

V-B=0
aD

VxH= —
Jr+ Y

Linear media:

P=¢x.E, D=cE

1

M=yx,H, H=-B

nm

B=V xA

1 1
Energy: U= —/ <€0E2+ —Bz> dt
2 Ho
Momentum: P=¢ [(ExB)dr

Poynting vector: S = L(E x B)
Mo

Larmor formula: P = ﬂqzaz
(37,44

€0 =8.85 x 10712 C?/Nm?
po =4m x 1077 N/A?

¢ =3.00x 10*m/s

e =1.60x107°C

m =9.11 x 1073 kg

(permittivity of free space)
(permeability of free space)
(speed of light)

(charge of the electron)

(mass of the electron)

SPHERICAL AND CYLINDRICAL COORDINATES

Spherical

x = rsin6 cos ¢
y =rsiné sing
z =rcosf

r=+/x*+y?+z?
6 = tan~! (,/x2 + yz/z)

¢ =tan™' (y/x)
Cylindrical

X = scos¢

y = ssing

z=z

s = /x2+y2
¢ = tan~' (y/x)
Z =2

f(:sinecosqbf'—i—cosecosd)é——sin ¢dA)
y =sin@sin ¢ T + cosOsin ¢ 6 +cosd ¢
7 =cosfr—sinf 6

F =sinfcosp X+ sin fsingy + cosb z
6 = cosfcospX+cosfsingy — sin 02
¢ =—singX+cosgy

X =cos¢§—sinpo
y=sin ¢S+ cosp ¢

i=1

§ =cos¢X+singy

¢ =—sinpX+cosgpy

i=1



